V = 2317.1 (4) Å³

Mo $K\alpha$ radiation $\mu = 0.89 \text{ mm}^{-3}$

 $0.37 \times 0.30 \times 0.23 \text{ mm}$

9175 measured reflections

2129 independent reflections

1723 reflections with $I > 2\sigma(I)$

T = 291 (2) K

 $R_{\rm int} = 0.019$

Z = 4

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Diagua(benzoato- $\kappa^2 O, O'$)(2,9-dimethyl-1,10-phenanthroline- $\kappa^2 N, N'$)nickel(II) nitrate dihydrate

Xiao-Peng Xuan,* Pei-Zheng Zhao and Qing-Hu Tang

Department of Chemistry, Henan Normal University, Xinxiang 453007, People's Republic of China

Correspondence e-mail: xpxuan@henannu.edu.cn

Received 17 July 2007; accepted 16 August 2007

Key indicators: single-crystal X-ray study; T = 291 K; mean σ (C–C) = 0.004 Å; R factor = 0.034; wR factor = 0.098; data-to-parameter ratio = 13.5.

 $[Ni(C_7H_5O_2)(C_{14}H_{12}N_2)(H_2O)_2]$ -The title compound, NO₃·2H₂O, consists of one Ni^{II} complex cation, two solvent water molecules and one non-coordinated nitrate anion. The Ni^{II} ion has a slightly distorted octahedral coordination geometry, bonded to two N atoms from one 2,9-dimethyl-1,10phenanthroline (dmphen) ligand, two O atoms from one benzoate anion and two water molecules. Both the cation and anion lie on a twofold rotation axis. O-H···O hydrogen bonds involving the water molecules as donors and $\pi - \pi$ stacking interactions between the dmphen ligands of symmetry-related cations, with a distance between their ring planes of 3.2197 Å, seem to determine the crystal packing.

Related literature

Structurally related Cu^{II} and Mn^{II} complexes have been characterized by Xuan et al. (2007) and Zhao et al. (2007), respectively.

Experimental

Crystal data

[Ni(C7H5O2)(C14H12N2)(H2O)2]-NO₃·2H₂O $M_r = 522.15$ Orthorhombic, Pbcn a = 10.4453 (9) Å b = 22.2586 (19) Å c = 9.9660 (9) Å

Data collection

Bruker SMART CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 1997) $T_{\min} = 0.732, \ T_{\max} = 0.817$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.034$	158 parameters
$wR(F^2) = 0.098$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 0.59 \ {\rm e} \ {\rm \AA}^{-3}$
2129 reflections	$\Delta \rho_{\rm min} = -0.39 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	<i>D</i> -Н	H···A	$D \cdots A$	$D - H \cdots A$
$\overline{\Omega^2 - H1W \cdots \Omega1}$	0.83	2.07	2,883 (2)	167
$O2-H2W\cdots O3^{i}$	0.82	2.08	2.903 (3)	174
$O5-H3W\cdots O2^{ii}$ $O5-H4W\cdots O4^{iii}$	0.83 0.82	1.88 2.16	2.707 (2) 2.860 (3)	174 143

Symmetry codes: (i) $-x + \frac{1}{2}, -y + \frac{3}{2}, z + \frac{1}{2};$ (ii) $x + \frac{1}{2}, -v + \frac{3}{2}, -z + 2;$ (iii) $-x + \frac{3}{2}, -y + \frac{3}{2}, z + \frac{1}{2}.$

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

Financial support by the Science Fund of Henan Province for Distinguished Young Scholars (No. 07410051005) is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2128).

References

Bruker (1997). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Xuan, X.-P., Zhao, P.-Z. & Zhang, S.-X. (2007). Acta Cryst. E63, m1817.

Zhao, P.-Z., Xuan, X.-P. & Wang, J.-G. (2007). Acta Cryst. E63, m2127.

supplementary materials

Acta Cryst. (2007). E63, m2405 [doi:10.1107/S1600536807040706]

Diaqua(benzoato- $\kappa^2 O, O'$)(2,9-dimethyl-1,10-phenanthroline- $\kappa^2 N, N'$)nickel(II) nitrate dihydrate X.-P. Xuan, P.-Z. Zhao and Q.-H. Tang

Comment

The formula unit of (I, Fig. 1) comprises a mononuclear $[Ni(dmphen)(benzoate)(H_2O)_2]^+$ cation, two uncoordinated water molecules, and a nitrate anion (dmphen is 2,9-dimethyl-1,10-phenanthroline). The Ni^{II} ion is in a distorted octahedral NiN₂O₄ geometry, being coordinated by two N atoms of the dmphen ligand, two O atoms of the benzoate anion and two O atoms of two water molecules. The coordination bond lengths and angles are given in Table 1. Both cation and anion have a crystallographic twofold symmetry, passing through the metal atom, dmphen molecule, benzoate anion, and nitrate anion. The non-coordinated nitrate anion is almost perpendicular to the phenyl ring of benzoate anion, with a dihedral angle of 83.05° between mean planes. In the crystal structure, one-dimensional chains along [100] are formed by intermolecular O_{water} —H···O_{nitrate} and O_{water} —H···O_{water} hydrogen bonds (Fig. 2 and Table 2). The crystal packing is also stabilized by π - π interactions between the dmphen rings of neighboring molecules (Fig. 2), with a distance between their ring planes of 3.220 Å.

Experimental

To a solution of dmphen hemihydrate ($C_{14}H_{12}N_2.0.5 H_2O$, 0.1089 g, 0.5 mmol) and sodium benzoate (0.072 g, 0.5 mmol) in ethanol (10 ml) was added a solution of Ni(NO₃)₂·6H₂O (0.1455 g, 0.5 mmol) in distilled water (10 ml). The resulting solution was refluxed for 5 h at 333 K and filtrated. Green single crystals of (I) were obtained after 4 d. by slow evaporation of the filtrate.

Refinement

H atoms bonded to C atoms were placed in calculated positions (C—H = 0.93 Å for aromatic CH; 0.96 Å for methyl CH₃), and were included in the refinement in the riding model approximation, with $U_{iso}(H) = 1.2U_{eq}(\text{carrier C})$ (aromatic CH) or $U_{iso}(H) = 1.5U_{eq}(\text{carrier C})$ (methyl CH₃). The water H atoms were located in a difference map and were refined as riding to their O atoms, with O—H bonds fixed to 0.82 Å and $U_{iso}(H) = 1.5 U_{eq}(\text{carrier O})$.

Figures

Fig. 1. The structure of (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms. Symmetry code: (A) 1 - x, y, 3/2 - z for cation; 1 - x, y, 1/2 - z for anion.

Fig. 2. Part of the crystal structure of (I), showing the formation of hydrogen-bonds (dashed lines) and π - π stacking interactions between dmphen ligands.

Diaqua(benzoato- $\kappa^2 O, O'$)(2,9-dimethyl-1,10-phenanthroline- $\kappa^2 N, N'$)nickel(II) nitrate dihydrate

 $F_{000} = 1088$

 $\lambda = 0.71073 \text{ Å}$

 $\theta = 2.7 - 26.8^{\circ}$

 $\mu = 0.89 \text{ mm}^{-1}$ T = 291 (2) K

Block, green

 $0.37 \times 0.30 \times 0.23 \text{ mm}$

 $D_{\rm x} = 1.497 \text{ Mg m}^{-3}$ Mo *K* α radiation

Cell parameters from 3407 reflections

Crystal data

[Ni(C₇H₅O₂)(C₁₄H₁₂N₂)(H₂O)₂]NO₃·2H₂O $M_r = 522.15$ Orthorhombic, *Pbcn* Hall symbol: -P 2n 2ab a = 10.4453 (9) Å b = 22.2586 (19) Å c = 9.9660 (9) Å V = 2317.1 (4) Å³ Z = 4

Data collection

Bruker SMART CCD diffractometer	2129 independent reflections
Radiation source: fine-focus sealed tube	1723 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.019$
T = 291(2) K	$\theta_{\text{max}} = 25.5^{\circ}$
φ and ω scans	$\theta_{\min} = 2.7^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 1997)	$h = -12 \rightarrow 12$
$T_{\min} = 0.732, \ T_{\max} = 0.817$	$k = -26 \rightarrow 26$
9175 measured reflections	$l = -10 \rightarrow 12$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.034$	H-atom parameters constrained
$wR(F^2) = 0.098$	$w = 1/[\sigma^2(F_o^2) + (0.0526P)^2 + 1.0711P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.05	$(\Delta/\sigma)_{\text{max}} = 0.002$
2129 reflections	$\Delta \rho_{max} = 0.59 \text{ e} \text{ Å}^{-3}$
158 parameters	$\Delta \rho_{min} = -0.39 \text{ e} \text{ Å}^{-3}$

Primary atom site location: structure-invariant direct methods Extinction correction: none

	x	у		Ζ	$U_{\rm iso}*/U_{\rm eq}$
Ni1	0.5000	0.661272 (1	6)	0.7500	0.03514 (16)
01	0.43542 (16)	0.74343 (7)		0.83637 (16)	0.0478 (4)
O2	0.17794 (17)	0.78534 (8)		0.88233 (18)	0.0643 (5)
H1W	0.2518	0.7770		0.8587	0.096*
H2W	0.1234	0.7638		0.8475	0.096*
03	0.5000	0.7955 (2)		0.2500	0.170 (3)
O4	0.5989 (3)	0.87694 (15	j)	0.2690 (3)	0.1113 (9)
05	0.65977 (15)	0.66105 (7)		0.87457 (17)	0.0528 (4)
H4W	0.7245	0.6661		0.8294	0.079*
H3W	0.6625	0.6795		0.9468	0.079*
N1	0.41788 (16)	0.59084 (8)		0.85549 (19)	0.0407 (4)
N2	0.5000	0.84737 (19))	0.2500	0.0668 (10)
C1	0.2989 (3)	0.65071 (12	2)	1.0176 (3)	0.0645 (8)
H1A	0.3704	0.6778		1.0139	0.097*
H1B	0.2736	0.6451		1.1094	0.097*
H1C	0.2286	0.6673		0.9677	0.097*
C2	0.3362 (2)	0.59182 (11)	0.9585 (3)	0.0492 (6)
C3	0.2870 (2)	0.53789 (13	5)	1.0127 (3)	0.0627 (7)
H3	0.2291	0.5394		1.0835	0.075*
C4	0.3234 (3)	0.48420 (13	5)	0.9627 (3)	0.0667 (8)
H4A	0.2910	0.4489		0.9994	0.080*
C5	0.4098 (2)	0.48161 (11)	0.8558 (3)	0.0568 (7)
C6	0.4548 (2)	0.53665 (9)		0.8044 (3)	0.0437 (5)
C7	0.4568 (3)	0.42671 (12	2)	0.7992 (3)	0.0718 (9)
H7	0.4265	0.3903		0.8319	0.086*
C8	0.5000	0.9625 (2)		0.7500	0.125 (3)
H8	0.5000	1.0043		0.7500	0.150*
C9	0.4668 (3)	0.93192 (15	j)	0.8644 (6)	0.1001 (15)
Н9	0.4455	0.9531		0.9417	0.120*
C10	0.4648 (2)	0.86985 (13	5)	0.8653 (4)	0.0662 (8)
H10	0.4402	0.8491		0.9422	0.079*
C11	0.5000	0.83864 (14)	0.7500	0.0491 (9)
C12	0.5000	0.77188 (15	j)	0.7500	0.0410 (7)
Atomic displaceme	nt parameters (A	$Å^2)$			
L	711	U ²²	U^{33}	U^{12}	U^{13}
Ni1 0	.0321 (2)	0.0313 (2)	0.0420 (3) 0.000	0.00452 (16)
O1 0.	.0499 (10)	0.0394 (9)	0.0541 (1	0) 0.0009 (7)	0.0145 (8)

02

O3

04

05

0.0565 (11)

0.0621 (15)

0.0382 (9)

0.220(6)

0.0593 (11)

0.066 (3)

0.122 (2)

0.0668 (11)

0.0772 (13)

0.224 (6)

0.150 (3)

0.0533 (10)

0.0097 (9)

-0.0057(16)

-0.0016(7)

0.000

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

U²³ 0.000 0.0002 (7)

-0.0154 (9) 0.000

0.0139 (18)

-0.0098 (8)

0.0016 (9)

0.142 (5)

-0.0105(15)

-0.0021 (8)

supplementary materials

N1	0.0330 (9)	0.0399 (10)	0.0491 (11)	-0.0007 (8)	-0.0024 (8)	0.0093 (8)
N2	0.048 (2)	0.084 (3)	0.069 (2)	0.000	0.0137 (16)	0.000
C1	0.0607 (17)	0.0714 (18)	0.0614 (17)	0.0167 (14)	0.0241 (14)	0.0206 (14)
C2	0.0338 (11)	0.0587 (15)	0.0551 (14)	0.0011 (10)	0.0013 (11)	0.0180 (11)
C3	0.0396 (12)	0.0765 (19)	0.0719 (18)	-0.0099 (13)	-0.0005 (13)	0.0316 (15)
C4	0.0518 (15)	0.0595 (17)	0.089 (2)	-0.0187 (13)	-0.0211 (15)	0.0331 (15)
C5	0.0528 (14)	0.0438 (14)	0.0737 (17)	-0.0105 (11)	-0.0276 (14)	0.0145 (12)
C6	0.0386 (11)	0.0337 (12)	0.0589 (14)	-0.0037 (9)	-0.0149 (10)	0.0057 (10)
C7	0.087 (2)	0.0361 (13)	0.093 (2)	-0.0081 (13)	-0.0394 (18)	0.0078 (13)
C8	0.050 (3)	0.031 (3)	0.293 (11)	0.000	-0.042 (4)	0.000
C9	0.0472 (16)	0.0515 (19)	0.202 (5)	0.0043 (14)	-0.019 (2)	-0.050(2)
C10	0.0400 (13)	0.0536 (16)	0.105 (2)	0.0019 (12)	-0.0031 (14)	-0.0244 (16)
C11	0.0326 (16)	0.0364 (18)	0.078 (3)	0.000	0.0001 (16)	0.000
C12	0.0357 (16)	0.0364 (17)	0.0510 (19)	0.000	0.0030 (14)	0.000

Geometric parameters (Å, °)

Ni1—N1	2.0734 (18)	C2—C3	1.413 (3)
Ni1—N1 ⁱ	2.0734 (18)	C3—C4	1.349 (4)
Ni1—O5	2.0800 (16)	С3—Н3	0.9300
Ni1—O5 ⁱ	2.0800 (16)	C4—C5	1.398 (4)
Ni1—O1 ⁱ	2.1307 (15)	C4—H4A	0.9300
Ni1—O1	2.1308 (15)	C5—C6	1.409 (3)
Ni1—C12	2.462 (3)	C5—C7	1.433 (4)
O1—C12	1.264 (2)	C6—C6 ⁱ	1.438 (5)
O2—H1W	0.8271	C7—C7 ⁱ	1.332 (7)
O2—H2W	0.8214	С7—Н7	0.9300
O3—N2	1.155 (5)	C8—C9	1.373 (5)
O4—N2	1.239 (3)	C8—C9 ⁱ	1.373 (5)
O5—H4W	0.8200	C8—H8	0.9300
O5—H3W	0.8291	C9—C10	1.382 (5)
N1—C2	1.335 (3)	С9—Н9	0.9300
N1—C6	1.365 (3)	C10—C11	1.393 (3)
N2—O4 ⁱⁱ	1.239 (3)	C10—H10	0.9300
C1—C2	1.489 (4)	C11—C10 ⁱ	1.392 (3)
C1—H1A	0.9600	C11—C12	1.486 (5)
C1—H1B	0.9600	C12—O1 ⁱ	1.264 (2)
C1—H1C	0.9600		
N1—Ni1—N1 ⁱ	81.75 (10)	H1B—C1—H1C	109.5
N1—Ni1—O5	91.57 (7)	N1—C2—C3	120.8 (2)
N1 ⁱ —Ni1—O5	88.22 (7)	N1—C2—C1	119.1 (2)
N1—Ni1—O5 ⁱ	88.22 (7)	C3—C2—C1	120.1 (2)
N1 ⁱ —Ni1—O5 ⁱ	91.57 (7)	C4—C3—C2	120.6 (3)
05—Ni1—O5 ⁱ	179.72 (9)	С4—С3—Н3	119.7
N1—Ni1—O1 ⁱ	169.99 (7)	С2—С3—Н3	119.7
N1 ⁱ —Ni1—O1 ⁱ	108.25 (7)	C3—C4—C5	120.0 (2)

O5—Ni1—O1 ⁱ	89.38 (7)	C3—C4—H4A	120.0
O5 ⁱ —Ni1—O1 ⁱ	90.86 (7)	С5—С4—Н4А	120.0
N1—Ni1—O1	108.25 (7)	C4—C5—C6	117.2 (2)
N1 ⁱ —Ni1—O1	169.99 (7)	C4—C5—C7	123.8 (2)
O5—Ni1—O1	90.86 (7)	C6—C5—C7	119.0 (3)
O5 ⁱ —Ni1—O1	89.38 (7)	N1—C6—C5	122.6 (2)
O1 ⁱ —Ni1—O1	61.76 (8)	N1—C6—C6 ⁱ	117.83 (13)
N1—Ni1—C12	139.13 (5)	C5—C6—C6 ⁱ	119.55 (17)
N1 ⁱ —Ni1—C12	139.13 (5)	C7 ⁱ —C7—C5	121.46 (17)
O5—Ni1—C12	90.14 (5)	C7 ⁱ —C7—H7	119.3
O5 ⁱ —Ni1—C12	90.14 (5)	С5—С7—Н7	119.3
O1 ⁱ —Ni1—C12	30.88 (4)	C9—C8—C9 ⁱ	120.5 (5)
01—Ni1—C12	30.88 (4)	С9—С8—Н8	119.7
C12—O1—Ni1	89.19 (15)	C9 ⁱ —C8—H8	119.7
H1W—O2—H2W	113.3	C8—C9—C10	120.3 (4)
Ni1—O5—H4W	109.5	С8—С9—Н9	119.8
Ni1—O5—H3W	123.0	С10—С9—Н9	119.8
H4W—O5—H3W	112.4	C9—C10—C11	119.3 (4)
C2—N1—C6	118.81 (19)	С9—С10—Н10	120.3
C2—N1—Ni1	129.93 (16)	C11—C10—H10	120.3
C6—N1—Ni1	111.24 (15)	C10 ⁱ —C11—C10	120.1 (4)
O3—N2—O4 ⁱⁱ	122.1 (2)	C10 ⁱ —C11—C12	119.93 (18)
O3—N2—O4	122.1 (2)	C10—C11—C12	119.93 (18)
O4 ⁱⁱ —N2—O4	115.8 (5)	01—C12—O1 ⁱ	119.8 (3)
C2—C1—H1A	109.5	O1—C12—C11	120.07 (15)
C2—C1—H1B	109.5	O1 ⁱ —C12—C11	120.08 (15)
H1A—C1—H1B	109.5	01—C12—Ni1	59.93 (15)
C2—C1—H1C	109.5	O1 ⁱ —C12—Ni1	59.92 (15)
H1A—C1—H1C	109.5	C11—C12—Ni1	180.0
N1—Ni1—O1—C12	-179.22 (8)	C2—N1—C6—C6 ⁱ	-178.6 (2)
N1 ⁱ —Ni1—O1—C12	4.2 (4)	Ni1—N1—C6—C6 ⁱ	2.9 (3)
O5—Ni1—O1—C12	88.84 (9)	C4—C5—C6—N1	0.4 (3)
O5 ⁱ —Ni1—O1—C12	-91.31 (9)	C7—C5—C6—N1	-177.9 (2)
O1 ⁱ —Ni1—O1—C12	0.0	C4—C5—C6—C6 ⁱ	179.2 (3)
N1 ⁱ —Ni1—N1—C2	-179.3 (2)	C7—C5—C6—C6 ⁱ	0.9 (4)
O5—Ni1—N1—C2	92.7 (2)	C4—C5—C7—C7 ⁱ	-177.3 (3)
O5 ⁱ —Ni1—N1—C2	-87.5 (2)	C6—C5—C7—C7 ⁱ	0.9 (5)
O1 ⁱ —Ni1—N1—C2	-2.7 (5)	C9 ⁱ —C8—C9—C10	-0.8 (2)
O1—Ni1—N1—C2	1.3 (2)	C8—C9—C10—C11	1.6 (4)
C12—Ni1—N1—C2	0.7 (2)	C9—C10—C11—C10 ⁱ	-0.8 (2)
N1 ⁱ —Ni1—N1—C6	-1.03 (11)	C9—C10—C11—C12	179.2 (2)
O5—Ni1—N1—C6	-89.00 (15)	Ni1—O1—C12—O1 ⁱ	0.000(1)
O5 ⁱ —Ni1—N1—C6	90.82 (15)	Ni1-01-C12-C11	180.0

supplementary materials

O1 ⁱ —Ni1—N1—C6	175.6 (3)	C10 ⁱ —C11—C12—O1	-159.65 (15)
O1—Ni1—N1—C6	179.58 (14)	C10-C11-C12-O1	20.35 (15)
C12—Ni1—N1—C6	178.97 (11)	C10 ⁱ —C11—C12—O1 ⁱ	20.35 (15)
C6—N1—C2—C3	-1.0 (3)	C10-C11-C12-O1 ⁱ	-159.65 (15)
Ni1—N1—C2—C3	177.21 (17)	N1 ⁱ —Ni1—C12—O1	-178.88 (12)
C6—N1—C2—C1	178.0 (2)	O5—Ni1—C12—O1	-91.44 (11)
Ni1—N1—C2—C1	-3.8 (3)	O5 ⁱ —Ni1—C12—O1	88.56 (11)
N1—C2—C3—C4	1.1 (4)	O1 ⁱ —Ni1—C12—O1	180.0
C1—C2—C3—C4	-177.9 (3)	N1—Ni1—C12—O1 ⁱ	-178.87 (12)
C2—C3—C4—C5	-0.4 (4)	N1 ⁱ —Ni1—C12—O1 ⁱ	1.12 (12)
C3—C4—C5—C6	-0.3 (4)	O5—Ni1—C12—O1 ⁱ	88.56 (11)
C3—C4—C5—C7	177.9 (3)	O5 ⁱ —Ni1—C12—O1 ⁱ	-91.44 (11)
C2—N1—C6—C5	0.2 (3)	01—Ni1—C12—O1 ⁱ	180.000 (1)
Ni1—N1—C6—C5	-178.29 (18)		

Symmetry codes: (i) -x+1, y, -z+3/2; (ii) -x+1, y, -z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
O2—H1W…O1	0.83	2.07	2.883 (2)	167
O2—H2W···O3 ⁱⁱⁱ	0.82	2.08	2.903 (3)	174
O5—H3W···O2 ^{iv}	0.83	1.88	2.707 (2)	174
O5—H4W···O4 ^v	0.82	2.16	2.860 (3)	143

Symmetry codes: (iii) -x+1/2, -y+3/2, z+1/2; (iv) x+1/2, -y+3/2, -z+2; (v) -x+3/2, -y+3/2, z+1/2.

Fig. 1

Fig. 2

